Scratch, Click & Vote

Mirosław Kutyłowski, Filip Zagórski

Institute of Mathematics and Computer Science Wroclaw University of Technology, Poland

End-to-end Voting Systems Workshop Washington DC, 13-14 X 2009

Voter vs Election Authority

- Voter obtains a ballot from Election Authority
- How does voter know if her ballot is correctly encoded? randomized partial checking or zero knowledge proof during pre-election audit
- How can one protect voter's privacy?
 Use ballot box (in SCV votes are cast through Proxy server)
- How one can assure that public data (commitments etc) does not reveal keys used for ballot-generation (covert-channel) – use verifiable random function or similar techniques

Voter vs voting machine (PC) part I

- Machine cannot change voter's choice voter obtains a receipt, which can be used to detect machine's misbehaviour.
- But at the same time, ballot and a receipt cannot be used to prove voter's choice
- Achieving these two properties is the hardest part in the system design.

Voter vs PC part II

- If a machine has the same knowledge as a voter:
 - machine knows exactly how voter voted (privacy threat)
 - machine can change voter's choice (in some schemes)
 - online vote selling is possible
 - virus attacks are possible
- Solution: voter obtains additional "information" during registration (untappable channel) so:
 - PC learns voter's choice but does not know if vote will be counted (fakekey) [JCJ WPES05]
 - PC does not learn voter's choice [Chaum's SureVote, KZ IWSEC07, KZ SCV08]

Voter vs PC consequences – usability

- PC learns voter's choice but does not know if vote will be counted (fakekey) [JCJ WPES05]
 - if voter votes ones machine learns her choice
 - in fact voter is obliged to cast many (fake) votes to keep her choice secret
 - election with 3 runs with 1 out of 3 candidates each 27 possibilities – vote 27 times (???)
- PC does not learn voter's choice [Chaum's SureVote, KZ IWSEC07, KZ SCV08]
 - SureVote verifiability vs secrecy
 - KZ IWSEC07 voter computes shift of the candidates
 - SCV ThreeBallot-like vote casting

Scratch, Click & Vote – ideas

SCV is verifiable hybrid voting scheme:

```
registration ballots and encoders are delivered to voters by:
traditional mail or email or physical visit in a
registration office,
```

voting votes are cast over the Internet

voter's computer is not trusted:

```
secrecy PC does not learn voter's choice integrity PC cannot change voter's choice even into a random one
```

receipt obtained by a voter does not prove voter's choice

```
masking ThreeBallot-like receipt ambiguity voter may use many encoders
```


Scratch, Click & Vote – ideas

- human verifiable: a receipt obtained by a voter is human-readable and easy to examine by a moderately educated voter,
- voter friendly: a voter (and her computer) needs not to perform any complicated (and hard to understand by an average voter) operations like: re-encryption, blind signatures etc.
- malware immune: integrity of the elections and privacy of votes do not rely on any assumption on trustworthiness of the equipment used by the voter,
 - efficient: computational overhead as well as communication volume are low

Actors & vocabulary

Actors:

Election Authority (EA) authority responsible for ballots preparation

Proxy authority responsible for preparation of encoders (simulates a ballot box)

Registrar authority responsible for the distribution of ballots and encoders

Voter's PC device used by a Voter

- Vocabulary:
 - ballot sheet of paper which a voter obtains from the Election Authority
 - encoder sheet of paper which a voter obtains from the Proxy, used to mask voter's choice from PC

SCV – short scheme description

- V1 Start with straightforward Internet-version of the ThreeBallot (in fact "four-ballot"):
 - a voter visits Proxy webpage
 - Strauss'-like attacks on receipts
 - ▶ 2k + 1 clicks in 1 out of k race & PC knows the choice!
- V2 Encoder (prepared by Proxy) is introduced:
 - exactly k clicks every option gets exactly one click PC does not know voter's choice,
 - PC can change voter's choice only with some probability,
 - but Proxy still knows voter's choice
- V3 Ballots (prepared by EA) with permuted list of candidates:
 - confirmation codes voter knows that vote is delivered
 - Proxy does not learn voter's choice
 - EA does not learn who cast a vote (communicates directly with Proxy)

Encoder

- ▶ Voter obtains a ballot from Election Authority
- Voter obtains many encoders from "Proxy" (many Proxies may be used)
- Voter lays them side by side

Candidate	R	S	Τ	U						Candidate	R	S	Τ	U
2 Jerry						n	Y	n	n	2 Jerry	n	Y	n	n
3 Edgar						n	Y	n	n	3 Edgar	n	Y	n	n
0 Ervin						Y	n	n	n	0 Ervin	Y	n	n	n
1 Donald						n	n	n	Y	1 Donald	n	n	n	Y
S_l						Sr				Sı	S_r			
ballot (from E	(A)				encoder (from	Prox	xy)		ballot + encod	der			

Voter clicks on the screen on boxes which correspond to Y next to her candidate

ballot				
Candidate	R	S	Τ	U
2 Jerry	n	Y	n	n
3 Edgar	n	Y	n	n
0 Ervin	Y	n	n	n
1 Donald	n	n	n	Y
Sı	S_r			

PC SC	creen		

Voter clicks on the screen on boxes which correspond to Y next to her candidate

ballot				
Candidate	R	S	Τ	U
2 Jerry	n	Y	n	n
3 Edgar	n	Y	n	n
0 Ervin	Y	n	n	n
1 Donald	n	n	n	Y
Sı	Sr			

PC screen

Voter clicks on the screen on boxes which correspond to Y next to her candidate

ballot				
Candidate	R	S	Τ	U
2 Jerry	n	Y	n	n
3 Edgar	n	Y	n	n
0 Ervin	Y	n	n	n
1 Donald	n	n	n	Y
Sı	S_r			

PC screen

Voter clicks on the screen on boxes which correspond to Y next to her candidate

PC screen

•

ballot				
Candidate	R	S	Τ	U
2 Jerry	n	Y	n	n
3 Edgar	n	Y	n	n
0 Ervin	Y	n	n	n
1 Donald	n	n	n	Y
Sı	Sr			

Voter clicks on the screen on boxes which correspond to Y next to her candidate

•

ballot				
Candidate	R	S	Τ	U
2 Jerry	n	Y	n	n
3 Edgar	n	Y	n	n
0 Ervin	Y	n	n	n
1 Donald	n	n	n	Y
S_l	S_r			

PC screen

Voter enters S_r (encoder serial number), proxy "translates" voter's choice into FourBallot form

ballot				
Candidate	R	S	Τ	U
2 Jerry	n	Y	n	n
3 Edgar	n	Y	n	n
0 Ervin	Y	n	n	n
1 Donald	n	n	n	Y
Sı	Sr			

PC screen

		×	×
×			×
	×	×	×
×		×	

► Voter enters *S*_I (ballot serial number), Proxy sends FourBallot form to the Election Authority

ballot				
Candidate	R	S	Τ	U
2 Jerry	n	Y	n	n
3 Edgar	n	Y	n	n
0 Ervin	Y	n	n	n
1 Donald	n	n	n	Y
Sı	Sr			

PC screen

		×	×
×			×
	×	×	×
×		×	
S_l			

 Voter obtains as a receipt one of the FourBallot form ballots (oblivious transfer like protocol used)

ballot					tran	sform	(by
Candidate	R	S	Τ	U			
2 Jerry	n	Y	n	n			×
3 Edgar	n	Y	n	n	×		
0 Ervin	Y	n	n	n		×	×
1 Donald	n	n	n	Y	×		×
S_l	S_r				S_l	•	

nsform (by Proxy)				receipt
		×	×	×
(X	
	×	×	×	×
		×		×
'n	X X X X X X X X X X			t

 $t = sign_{EA}(T, S_l)$ - confirmation token (like in Sure Vote)

Security - PC/virus

- Voter's PC can change voter's choice (with some probability):
 - PC does not know which row corresponds to the chosen candidate
 - ► modification can be detected by $Proxy \frac{1}{3k}$, where k is the number of candidates
 - ▶ modification can be detected by voter receipt $(\frac{1}{4})$

Security - Proxy, Election Authority

- Proxy can change voter's choice into a random one, but then a receipt will change - detection with probability ¹/₄
- Election Authority negligible probability: Pre- and Post-election audits

Security - other attacks

- ► There are known attacks on ThreeBallot (Strauss, Appeal):
 - FourBallots is much more immune better probability distribution – Strauss' attack inefficient
 - moreover, it is easy to implement following modification (only electronic version) – instead of publishing every ballot, every ballot is split into masked ballots:

SCV - Implementation

- ► Elections 8-10 VI 2009 e-glosowanie.org, 6 500 voters
- Techniques used: Java, MySQL, PHP, Apache/Idea web servers, Solaris (EA), Red Hat (Proxy), Sun Cryptographic Accelerator (secret sharing, efficiency, admin passwords/master keys outside server's memory)
- See how it works (fully internet version ballots are sent by email): zagorski.im.pwr.wroc.pl/scv

Summary - problems of Internet Voting

- Main problem of remote-voting systems is physical coercion (e. g. by the voter's spouse) but it is accepetable – mail-in voting.
 - (Solution: well designed voter's registration)
- Why we do we really affraid of internet voting?:
 - possibility of massive undetectable fraud (malware on voter's PC)
 - possibility of massive online vote-selling (sell-your-vote software)

SCV is immune against both!

► Thank you for your attention